- This list is not updated frequently enough. You can find many of my more recent works on arxiv.org
-
A Tensor Compiler for Unified Machine Learning Prediction Serving
Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus Weimer, Matteo Interlandi
-
Vamsa: Automated Provenance Tracking in Data Science Scripts
Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, Markus Weimer
-
MLSys: The New Frontier of Machine Learning Systems
Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar
-
From the Edge to the Cloud: Model Serving in ML.NET
Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Markus Weimer, Matteo Interlandi
-
PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems
Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio, Markus Weimer, Matteo Interlandi
-
Batch-Expansion Training: An Efficient Optimization Framework
Michal Derezinski, Dhruv Mahajan, S. Sathiya Keerthi, S. V. N. Vishwanathan, Markus Weimer
-
Towards Geo-Distributed Machine Learning
Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino, Giovanni Matteo Fumarola, Arvind Krishnamurthy
-
Towards High-Performance Prediction Serving Systems
Yunseong Lee, Alberto Scolari, Matteo Interlandi, Markus Weimer, Byung-Gon Chun
-
Apache REEF: Retainable Evaluator Execution Framework
Byung-Gon Chun, Tyson Condie, Yingda Chen, Brian Cho, Andrew Chung, Carlo Curino, Chris Douglas, Matteo Interlandi, Beomyeol Jeon, Joo Seong Jeong, Gyewon Lee, Yunseong Lee, Tony Majestro, Dahlia Malkhi, Sergiy Matusevych, Brandon Myers, Mariia Mykhailova, Shravan Narayanamurthy, Joseph Noor, Raghu Ramakrishnan, Sriram Rao, Russell Sears, Beysim Sezgin, Taegeon Um, Julia Wang, Markus Weimer, Youngseok Yang
-
Salmon: Towards Production-Grade, Platform-Independent Distributed ML
Mikhail Bilenko, Tom Finley, Shon Katzenberger, Sebastian Kochman, Dhruv Mahajan, Shravan Narayanamurthy, Julia Wang, Shizhen Wang, Markus Weimer
-
Dolphin: Runtime Optimization for Distributed Machine Learning
Byung-Gon Chun, Brian Cho, Beomyeol Jeon, Joo Seong Jeong, Gunhee Kim, Joo Yeon Kim, Woo-Yeon Lee, Yun Seong Lee, Markus Weimer, Youngseok Yang, Gyeong-In Yu
-
Towards Geo-Distributed Machine Learning
Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino and Giovanni Matteo Fumarola
-
REEF: Retainable Evaluator Execution Framework
Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Yunseong Lee, Tony Majestro, Dahlia Malkhi , Sergiy Matusevych, Brandon Myers, Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao, Russell Sears, Beysim Sezgin, Julia Wang
-
Elastic Distributed Bayesian Collaborative Filtering
Alex Beutel, Markus Weimer, Tom Minka, Yordan Zaykov, Vijay Narayanan
-
Towards Resource-Elastic Machine Learning
Shravan Narayanamurthy, Markus Weimer, Dhruv Mahajan, Tyson Condie, Sundararajan Sellamanickam, Keerthi Selvaraj
-
Distributed and Scalable PCA in the Cloud
Arun Kumar, Nikos Karampatziakis, Paul Mineiro, Markus Weimer and Vijay Narayanan
-
Declarative Systems for Large-Scale Machine Learning
Vinayak Borkar, Yingyi Bu, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis, Tyson Condie, Markus Weimer and Raghu Ramakrishnan
-
WWW 2012 Tutorial: New Templates for Scalable Data Analysis
Alex Smola, Amr Ahmed, Markus Weimer
-
Machine learning in ScalOps, a higher order cloud computing language
Markus Weimer, Tyson Condie and Raghu Ramakrishnan
-
The Yahoo! Music Dataset and KDD-Cup’11
Gideon Dror, Noam Koenigstein, Yehuda Koren, Markus Weimer
-
A Convenient Framework for Efficient Parallel Multipass Algorithms
Markus Weimer, Sriram Rao, Martin Zinkevich
-
Parallelized Stochastic Gradient Descent
Martin Zinkevich, Markus Weimer, Alex Smola, Lihong Li
-
Quantile Matrix Factorization for Collaborative Filtering
Alexandros Karatzoglou, Markus Weimer
-
Collaborative Filtering on a Budget
Alexandros Karatzoglou, Alex Smola, Markus Weimer
-
Machine Teaching -- A Machine Learning Approach to Technology Enhanced Learning
Markus Weimer
-
Maximum margin matrix factorization for code recommendation
Markus Weimer, Alexandros Karatzoglou and Marcel Bruch
-
Adaptive Collaborative Filtering
Markus Weimer, Alexandros Karatzoglou and Alexander J. Smola
-
Improving Maximum Margin Matrix Factorization
Markus Weimer, Alexandros Karatzoglou and Alexander J. Smola
-
CofiRank - Maximum Margin Matrix Factorization for Collaborative Ranking
Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, Alex Smola